Waters[™]

应用纪要

使用XBridge[™] Premier GTx BEH[™] SEC 450 Å 2.5 µm色谱柱通过SEC-MALS改进AAV表征

Lavelay Kizekai, Balasubrahmanyam Addepalli, Matthew A. Lauber

Waters Corporation

用于体外诊断。仅在部分国家/地区销售。

摘要

我们需要对由腺相关病毒载体(AAV)组成的基因治疗(GTx)产品进行详细表征,从而确保其安全性和有效性。在本 应用纪要中,我们评估了XBridge Premier GTX BEH SEC 450 Å 2.5 μm色谱柱在体积排阻色谱与多角度光散射(SEC-MALS)联用对AAV进行生物物理分析中的实用性。通过结合采用亲水性MaxPeak高性能表面(h-HPS)制造的新 型色谱柱硬件与由2.5 μm二醇基键合450 Å BEH颗粒组成的高效填充床,可以实现高通量大小异构体分析。这些 SEC色谱柱在分析小体积样品时表现出更高的灵敏度,MALS噪音低,并且几乎没有颗粒脱落。因此,有助于对样 品组分进行准确的摩尔质量和大小测量。这种SEC-MALS技术可以生成有关工艺和产品相关杂质的详细信息,这些 信息对于工艺开发决策和准备全面的法规审批材料至关重要。

优势

- 采用匹配良好的分离范围(450 Å孔径)和高效2.5 μm填料的AAV SEC分离
- 低MALS噪音,适合高置信度测定完整AAV
- 出色的色谱分离度可快速区分聚集体与单体,实现稳定的相对定量
- 以更高的灵敏度和回收率分析多种AAV血清型的小体积样品

简介

腺相关病毒(AAV)是一种先进的基因治疗方式,通过在体内递送转基因药物起到在人类细胞水平上纠正遗传疾病的 目的。目前,共有三种经过FDA批准的AAV药物产品,分别用于治疗B型血友病、脊髓性肌萎缩症和视网膜疾病¹。 还有200多种基于AAV的基因治疗药物处于不同的开发和临床试验阶段²。 掌握给药的安全性和有效性平衡颇为困 难,剂量过高可能会导致毒性和死亡。因此我们必须精确地控制这些药品的滴度、效价和纯度³。此外,我们还需 要准确了解免疫原性组分,例如是否存在空衣壳和聚集体。病毒衣壳通常呈胶体颗粒,具有确定的密度和聚集趋 势。聚集体会减缓扩散,降低表面积/体积比和有效病毒颗粒的数量,这意味着聚集体水平是一项关键质量属性 ,必须进行定量⁴。

体积排阻色谱与多角度光散射(MALS)二者的结合是一种直接表征AAV样品组分的方法,可提供的信息包括衣壳和 DNA的大小分布、摩尔质量、聚集特征和滴度⁵。在本应用纪要中,我们展示了XBridge Premier GTx BEH SEC 450 Å 2.5 μm色谱柱在摩尔质量测定、大小测量、聚集体检测以及空衣壳/完整衣壳比监测方面的高灵敏度和高效 表现。本研究还表明,使用内径4.6 mm和7.8 mm的色谱柱均可获得优异的结果。这种全面表征有助于药物开发 人员快速完成多属性测定。

实验

制备2x PBS:将四包磷酸盐缓冲盐混合物(Sigma,P/N:P-3583)溶于2 L MΩ水中,制得pH为7.4,含20 mM 磷酸盐、276 mM NaCl、5.4 mM KCl的溶液。使用1000 mL Nalgene[™] Rapid-Flow[™]无菌一次性PES过滤器(孔 径0.1 μm,P/N:567-0010)过滤溶液。

用PBS温和地溶解牛血清白蛋白(BSA)(热休克馏分,Sigma,P/N:A8022-10g),制得浓度为2 mg/mL和4.5 mg/mL的牛血清白蛋白溶液。使用孔径0.02 μm,直径10 mm的CYTIVA Whatman针式过滤器(P/N:6809-1002)过滤溶解的蛋白质溶液。

将牛甲状腺球蛋白(BTG)(Sigma, P/N: T1001-100 mg)溶于PBS中,制得浓度为4.5 mg/mL的牛甲状腺球蛋白,并使用孔径0.22 μm的低蛋白结合Millex-HV过滤器(EMD Millipore, P/N: SLHVR13SL)过滤。

AAV2-EMPTY 2E+13 vg/mL、AAV2-CMV-GFP 2E+13 vg/mL、AAV9-EMPTY 2E+13 vg/mL和AAV9-CMV-GFP 2E+13 vg/mL购自Virovek并储存于-80 °C。临使用前,将样品解冻至室温,用移液枪轻轻吸打混合,并使用 Benchmark Scientific微型离心机在15,000 rpm下离心1 min。

AAV9-EMPTY和AAV9-CMV-GFP(完整)样品前处理:按照上述方法解冻并混合样品后,按1:0、1:1、1:2、1:5、1:10和0:1的比例轻轻混合,然后离心1 min以制备空衣壳和完整衣壳样品。根据估计,上述衣壳中的CMV-GFP基因组大小为2.5 kb。这些完整AAV样品中可能存在一些过填充(2x基因组)衣壳集合。

液相色谱条件

液相色谱系统:	ACQUITY™ UPLC H-Class Bio
检测:	ACQUITY TUV检测器(钛合金流通池,5 mm,1500 nL)
波长:	280 nm
检测:	ACQUITY RI检测器
数据采集	Empower™ Pro 3 Feature Release 3
样品瓶:	最大回收样品瓶和瓶盖(P/N: 186000327C)和 300 μL聚丙烯螺纹口样品瓶(沃特世P/N: 186004112)
色谱柱:	XBridge Premier GTx BEH SEC 450 Å 2.5 µm色谱 柱, 4.6 x 150 mm(P/N: 186010584)
	XBridge Premier GTx BEH SEC 450 Å 2.5 μm色谱 柱, 4.6 x 300 mm(P/N: 186010585)
	XBridge Premier GTx BEH SEC 450 Å 2.5 μm色谱 柱, 7.8 x 300 mm(P/N: 186010586)
柱温:	30 °C
样品温度:	6 °C
样品管理器清洗液:	18.2 MΩ <i>ז</i> ⁄k

密封清洗液:	10% HPLC级甲醇/90% 18.2 MΩ水(v/v)
进样体积:	BSA(10 μL,浓度为2 μg/μL); AAV(5 μL~30 μL)
流速:	0.20 mL/min
流动相A:	2X PBS:磷酸盐缓冲液(20 mM磷酸盐、276 mM NaCl、5.4 mM KCl,pH 7.4)
样品:	BSA 2 µg/µL; BSA 4.5 µg/µL; 甲状腺球蛋白4.5 µg/µL; AAV2-EMPTY 2E+13 vg/mL, AAV2-CMV- GFP 2E+13 vg/mL, AAV9-EMPTY 2E+13 vg/mL, AAV9-CMV-GFP 2E+13 vg/mL
梯度:	等度
梯度: SEC-MALS	等度
梯度: SEC-MALS 系统:	等度 搭载Wyatt QELS™嵌入式在线动态光散射(DLS)模 块的WYATT DAWN™ (Neon)
梯度: SEC-MALS 系统: 检测:	等度 搭载Wyatt QELS™嵌入式在线动态光散射(DLS)模 块的WYATT DAWN™ (Neon) 采用QELS的18个角度光散射检测
梯度: SEC-MALS 系统: 检测: 波长:	等度 搭载Wyatt QELS™嵌入式在线动态光散射(DLS)模 块的WYATT DAWN™ (Neon) 采用QELS的18个角度光散射检测 659 nm

结果与讨论

SEC按大小分离溶液中的样品组分。因此,可以轻松区分单体AAV衣壳与聚集体和外在杂质。与MALS、紫外(UV)

和示差折光(RI)检测器配合使用时,SEC可同时使用吸光度、光散射和示差折光数据,在无需标准曲线的情况下对 AAV样品进行详细测量。在MALS检测过程中,组分物质的光散射程度取决于其在溶液中的大小和浓度。回转半径 (Rg,也称为均方根半径)由散射光强度的角度相依决定,可通过DAWN仪器在多个角度下(最多18个角度)轻 松测量。散射光的强度取决于材料的浓度和摩尔质量。通过将MALS数据与在线浓度检测器(例如UV或RI)相结合 ,可以确定绝对摩尔质量。流体动力学半径(Rh)是根据分子扩散(布朗运动)引起的光散射强度波动得出的⁶。通 过QELS(准弹性光散射)模块进行动态光散射(DLS),可测量连续流动模式下单个角度的散射光强度波动,无需 扰乱系统即可测量流体动力学半径。Wyatt ASTRA软件利用合并后的UV、RI、MALS、DLS数据来确定分析物的物 理属性,包括其粒径、摩尔质量和组成(例如AAV的Vg/Cp)。

首先,使用XBridge Premier GTx BEH SEC 450 Å 2.5 μm SEC 4.6 x 150 mm 色谱柱分析BSA(牛血清白蛋白)、牛甲状腺球蛋白(BTG)和AAV2样品。图1a为结果色谱图,表1表示在这些样品中观察到的各种组分的绝对摩尔 质量。正如预期所料,AAV2单体的洗脱时间(12.2 min)早于BTG单体(13.7 min)和BSA单体(17.0 min)。然而,这 些样品中的可溶聚集体表现出有趣的行为。虽然BSA二聚体、三聚体和其他潜在的高阶聚集体洗脱时间很晚

(14分钟后),但BTG二聚体(约1,300 kDa)与AAV2单体(约3,700 kDa)表现出重叠洗脱。类似地,BTG三聚体与AAV2二聚体-三聚体,BTG四聚体与AAV2样品的高阶聚集体发生重叠。Wyatt ASTRA软件生成了所有组分的 生物物理特性,详细信息见表1。

图1*a.BSA*(粉色,2*mg/mL*)、BTG(4.5 mg/mL,蓝色)和AAV2空衣壳(2*E*+13 vg/mL,绿色)的SEC色谱图 以及摩尔质量数-时间曲线。此处提供了使用XBridge Premier GTx BEH SEC 450 Å 2.5 µm, 4.6 x 150 mm色谱柱与 90°角LS(每个样品采用颜色编码)获得的样品迹线。注意三种不同蛋白质和聚集体之间的洗脱时间差异。尽管 AAV2单体和BTG二聚体表现出相似的保留时间,但MALS能够提供准确的摩尔质量测定,而不受洗脱时间的影响。 b.根据SEC-MALS分析期间检测到的峰绘制的回转半径(*Rg*)和流体动力学半径(*Rh*)图。表中还提供了各种蛋白质组 分的测量半径(*Rg*和*Rh*)比较结果。红线表示MALS阈值(尺寸<10 nm),低于该阈值预计将发生各向同性散射 。

	单体(峰1)				二聚体(峰2)			三聚体(峰3)				高级聚集体(峰4)				
蛋白质	洗脱时间 (min)	摩尔质量 (kDa)	Rg (nm)	Rh (nm)												
BSA	17.0	65.4	N/D	3.6	16.1	131.4	N/D	5.22	15.4	199.6	N/D	7.3	14.8	283.7	N/D	9.3
BTG	13.7	616.1	5.1	9.2	12.0	1277.1	10.6	12.7	11.1	2275.6	15.0	16.3	9.0	22511.7	27.0	28.9
AAV2	12.2	3678.4	11.6	13.9	10.8	6437.2	17.7	18.3	10.4	9239.4	20.5	24.0	9.1	20827.4	30.4	32.7

表1.使用XBridge Premier GTx BEH SEC 450 Å 2.5 μm, 4.6 x 150 mm色谱柱通过SEC-MALS法测定AAV2、BTG和 BSA的生物物理特性。图1中每张色谱图的SEC峰标记为P1-P4,根据摩尔质量数测量结果,对应于每种蛋白质的单 体、二聚体、三聚体和高阶聚集体(HOA)。

重叠的洗脱曲线表明流体动力学半径相似。实际上,AAV2单体的Rg和Rh值分别为11.6 nm和13.9 nm,非常接近 AAV9报告的测量值⁷。 有趣的是,BTG二聚体(峰3)的Rg和Rh值分别为10.6 nm和12.7 nm,与AAV2单体接近 (图1b)。AAV二聚体(Rg: 17.7 nm和Rh: 18.3 nm)和高阶聚集体表现出按比例增大的Rg和Rh测量值。尽管 BSA(一种各向同性散射体)的Rg测量值低于MALS 10 nm的测量限值,但基于QELS的检测仍能够测定Rh值,如 图1b所示。

在某些情况下,Rg/Rh比可以指向构象信息,因此有必要对其进行解读。球状折叠蛋白质的Rg/Rh比预计约为0.78 ⁸。AAV单体(峰1)、二聚体(峰2)和三聚体(峰3)的Rg/Rh计算值约为0.81。AAV高阶聚集体(峰4)的该值 略高,为0.91,表明它们可能具有扩展构象排列。此外,AAV峰4的多分散性值(Mw/Mn比)为1.30,表明存在显 著的多分散性。

即使在低流速(<0.3 mL)条件下,XBridge Premier GTx BEH SEC 450 Å 2.5 µm色谱柱也表现出低MALS噪音和高 灵敏度MALS信号检测(图2),因此测量结果可信度高。此外,这些色谱柱的分离度足以确保准确推断目标峰的 数据。在所示的12.2分钟洗脱时间,AAV单体的摩尔质量测定值约为3.7 MDa,接近AAV的平均理论值(约3.8 MDa)。完全分离的二聚体形式(Rs=3.3)在10.5分钟时的实测摩尔质量为6.4 MDa。在10.8分钟处,二聚体左侧的 肩峰显示出9.1 MDa的摩尔质量,与两种单体和半单体AAV物质的聚集大约匹配。在13.7 min处观察到AAV的碎片 形态或潜在的工艺相关杂质,摩尔质量约为1.2 MDa。

图2.使用XBridge Premier GTx BEH SEC 450 Å 2.5 μm 4.6 x 300 mm色谱柱进行SEC-MALS分析得到的AAV2-EMPTY衣壳的特征。a. MALS检测的噪音的RMS值(0-4.5 min)。请注意,噪音值(30 μV)远小于标准化噪音阈值 (100 μV)。

b. AAV2衣壳的UV吸光度、LS和dRI信号叠加。基于角度相依所选择的色谱峰用阴影框表示。

*c. b*图阴影峰的德拜图(*K*c/R*^{II} vs sin^{II})。该图省略了较低和较高角度的组分(前部1、2以及后部17和18检测器)。请注意,多个*LS*检测器检测到的散射光的角度相依具有线性。

d. AAV2组分的摩尔质量测定结果。

需要注意的是,这些AAV样品由相对较少的CMV-GFP基因组表达。因此,该样品可能存在含有AAV的单基因组和 双基因组的集合(即2.5 kb和5 kb包装的衣壳)。

AAV有多种血清型,每种血清型的组分谱可能各不相同。为探讨这种可能性,我们通过SEC-MALS评估了一种 AAV9血清型(空衣壳)(图3)。XBridge Premier GTx BEH SEC 450 Å 2.5 μm 4.6 x 300 mm色谱柱可有效分离 AAV9的聚集体与单体,与AAV2样品的分离结果相同。

图3.使用XBridge Premier GTx BEH 450 Å 2.5 μm SEC 4.6 x 300 mm色谱柱对AAV9-Empty衣壳进行SEC-MALS分析 。a. UV吸光度(绿色)、示差折光(蓝色)和光散射(红色)迹线的叠加图以及所选的单体峰顶点。

b.德拜图展示了角度相依的线性。

c. AAV9组分峰的RMS半径(Rg)图。

d. AAV9组分峰的RMS半径(Rg)与摩尔质量的线性关系。

有趣的是,与AAV2相比,AAV9表现出更多的高阶聚集体(图1–2)。在12.2 min处洗脱的单体AAV9(峰1)的摩尔质量测定值为3.8 MDa。在10.50 min (Rs=3.81)处洗脱的分离良好的二聚体(峰2)的摩尔质量为8.2 MDa。此外,聚集体的RMS半径(或Rg)和摩尔质量表现出良好的相关性(图3c–3d)。

本SEC-MALS研究中采用的三种检测器的流通池体积不同(UV=5 μL, MALS=70 μL, RI=1.3 μL)。MALS流通池 的大体积意味着在特定情况下可能会出现峰展宽问题。为了解这种影响,我们采用两种直径不同(4.6 mm或7.8 mm)但柱长相同(300 mm)的色谱柱来分析AAV9样品。按照Empower软件的建议,随着色谱柱内径的增大按比 例分别增加进样体积和流速(4.6 mm色谱柱增加15 μL, 7.8 mm色谱柱增加43.1 μL, 流速从0.2 mL增加至0.575 mL)。这些色谱柱得到的SEC-MALS迹线叠加图(图4)显示,二者的峰轮廓具有良好的一致性。正如预期所料 , 7.8 mm色谱柱的分离度略高,这可能反映在两种色谱柱之间观察到的摩尔质量和Rg测量值的细微差异上。

图4.两种不同尺寸(4.6 × 300 mm和7.8 × 300 mm)的XBridge Premier GTx BEH SEC 450 Å 2.5 μm色谱柱的 SEC-MALS数据比较。在4.6 × 300 mm色谱柱(绿色)与7.8 × 300 mm色谱柱(红色)上采集的AAV9 SEC-MALS迹线的叠加图以及衣壳半径(a)和摩尔质量(b)实测值。

总衣壳浓度(Cp)和病毒基因组浓度(Vg)滴度的测定通常采用ELISA和qPCR技术,但这些技术耗时且不稳定⁵。 Wyatt ASTRA软件(第8版)可以将280 nm处的UV吸光度和RI信息与MALS数据相结合,单独提供蛋白质和核酸 信息。这对于确定空衣壳/完整衣壳比非常有用。为此,以固定的AAV空衣壳/完整衣壳比进样并进行SEC-MALS分 析,以确定该测量的线性。图5展示了不同AAV9空衣壳/完整衣壳比下绝对摩尔质量的测量结果。SEC根据分子在 溶液中的大小对其进行分离。由于AAV空衣壳和完整衣壳具有相同的流体动力学半径,因此完整衣壳和空衣壳会在 SEC单体峰中发生共洗脱。但是,我们可以通过上述数据分析来区分蛋白质质量数、核酸质量数和总质量数。分析 不同的空衣壳-完整衣壳比后,核酸质量数测量实现线性增加,R²值为0.9998。需要注意的是,这些AAV样品表达 的CMV-GFP基因组相对较少。因此,该样品可能存在含有AAV的单基因组和双基因组的集合(即2.5 kb和5 kb包装 的衣壳)。

图5. 基于SEC-MALS区分AAV完整衣壳和空衣壳。a. 将AAV9按照已定义空衣壳/完整衣壳比(1:0(蓝色)、1:1(粉色)、1:2(绿色)、1:5(紫色)、1:10(橙色)和0:1(黑色))进行混合和分析。ASTRA软件根据摩尔质量区分AAV9的完整衣 壳(-)(衣壳外壳和基因组)、单独的衣壳外壳(+)和核酸(NA)(x)。空衣壳和完整衣壳的摩尔质量实测值分别为 3,851 kDa和4,709 kDa。空衣壳中残留的核酸和完整衣壳中的基因组核酸的质量分别为约20 kDa和约891 kDa⁵。 同样,与包含单个2.5 kb基因组的衣壳的预测值相比,某些过度填充的衣壳产生的平均基因组质量可能略有增加。 b. AAV9完整衣壳和空衣壳混合物的摩尔质量与vg/cp比率关系图。请注意,所有比率下衣壳蛋白外壳的实测质量 数(蓝色虚线)恒定,vg/cp(病毒基因组/外壳蛋白)的值取决于空衣壳/完整衣壳比率。0.00、0.52、0.69、 0.93、0.97和1.13的Vg/Cp比率分别与1:0、1:1、1:2、1:5、1:10和0:1的比率完全对应。

结论

在本应用纪要中,我们展示了XBridge Premier GTx BEH SEC 450 Å 2.5 μm色谱柱对不同AAV血清型的出色分离 度和高效MALS分析的能力。本研究以高分离度实现了样品组分的分离,因此可以轻松确定其生物物理特性,包括 摩尔质量、大小和聚集体组成。这些研究还证明,色谱柱孔径经过适当匹配,可以对各种AAV样品的聚集体、单体 和低分子量杂质进行高效分离。此外,本研究表明4.6 mm内径SEC色谱柱可与大尺寸流通池MALS检测器配合使 用,但大内径(7.8 mm内径)色谱柱的分离度和大小测定结果更理想。最后,我们通过确定空衣壳/完整衣壳比 以及快速测定绝对摩尔质量和大小,证实了SEC-MALS是一种强大的多属性分析方法。

参考资料

- 1. Fekete, S., *et al.*, Chromatographic Strategies for the Analytical Characterization of Adeno-Associated Virus Vector-Based Gene Therapy Products.TrAC Trends in *Analytical Chemistry*, 2023.164: p. 117088.
- 2. AAV Vectors in Gene Therapy: How Recent Clinical Advances are Unraveling New Potentials? DelveInsight Blog, 2022.
- 3. High-dose AAV gene therapy deaths. *Nature Biotechnology*, 2020.38(8): p. 910–910.
- 4. Pradhan, S., et al., Viral Aggregation: The Knowns and Unknowns. Viruses, 2022.14(2).
- 5. McIntosh, N.L., *et al.*, Comprehensive Characterization and Quantification of Adeno Associated Vectors by Size Exclusion Chromatography and Multi Angle Light Scattering.Scientific Reports, 2021.11(1): p. 3012.
- 6. Online MALS-QELS (Quasi-Elastic Light Scattering).Wyatt Technology.AN7301.
- 7. Michelle Chen, A.P., Quantifying quality attributes of AAV gene therapy vectors by SEC-UV-MALSdRI.Wyatt Technology.AN1617.
- 8. Tande, B.M., *et al.*, Viscosimetric, Hydrodynamic, and Conformational Properties of Dendrimers and Dendrons.*Macromolecules*, 2001.34(24): p. 8580-8585.

特色产品

ACQUITY UPLC H-Class PLUS Bio系统 < https://www.waters.com/10166246>

ACQUITY Arc Bio系统 < https://www.waters.com/waters/nav.htm?cid=134966135>

ACQUITY UPLC可变波长紫外检测器 < https://www.waters.com/514228>

2414示差折光(RI)检测器 </nextgen/cn/zh/products/chromatography/chromatography-detectors/2414refractive-index-ri-detector.html>

Empower色谱数据系统 < https://www.waters.com/10190669>

720007969ZH, 2023年6月

© 2023 Waters Corporation. All Rights Reserved. 使用条款 隐私 商标 招聘 危险化学品生产经营许可证 Cookie Cookie设置 沪ICP备06003546号-2 京公网安备 31011502007476号